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Reentrant transition of the Ising model on the centred square 
lattice 

T Morita 
Department of Engineering Science, Faculty of Engineering, Tohoku University, Sendai 
980, Japan 

Received 31 May 1985 

Abstract. The Ising model on the centred square lattice (Union Jack lattice) is studied by 
Vdovichenko’s method, for a more general case than Vaks et al. The reentrant transition 
of the system is interpreted in terms of effective interactions. A method of associating a 
factor -1  to some comers of a loop in Vdovichenko’s method is adopted, by which we 
can obtain the expression of the free energy by calculating a finite number of determinants 
which consist only of elements of integers. 

1. Introduction 

The critical temperature of the Ising model on a two-dimensional lattice can be 
calculated exactly by Vdovichenko’s method (Vdovichenko 1965). The method is 
useful even when the unit cell of repetition in the system is not small, providing the 
interactions are only between nearest neighbours. An account of the method, closely 
following the original, is found in a textbook by Landau and Lifshitz (1968). A detailed 
proof showing that the method is justified is given in a separate paper (Morita 1986). 

With the aid of Vdovichenko’s method, Vaks ef al (1966) and Kitatani ef a1 (1985) 
constructed Ising models which show a reentrant transition. The system studied by 
Vaks et al (1966) is the Ising model on the centred square lattice in which the centre 
of each plaquette of the square lattice is also a site as shown in figure 1. We shall call 
the original square lattice sublattice A and the sublattice of the centres sublattice B. 
We denote the interactions between sites on sublattice A by J ,  and J2,  and the 
interactions of the centres with others by J3 and J4. The lattice has the same translational 

J i  

Figure 1. The centred square lattice. 
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symmetry as the original square lattice. Vaks et a1 (1966) studied the system where 
J2 = J ,  and J3 = J4. We now consider the same system in addition to the system where 
J2 = J1 > 0 and J4 = -J3 < 0. Both systems show a reentrant transition. The purpose of 
the present paper is to show that this transition can be interpreted in terms of the 
effective interactions via the centre of the plaquette. In the latter model, the interaction 
via the centre of the plaquette is antiferromagnetic between horizontal layers on 
sublattice A and it competes with the ferromagnetic interaction J2,  and there occurs 
the layered antiferromagnetic (superantiferromagnetic) order. 

In 9 2, we sketch the method of Vdovichenko (1965) for the Ising model on the 
square lattice. The method is applied to the system on the centred square lattice in 
9 3. The effective interactions via the centre of the plaquette are calculated in 9 4 and 
our conclusions are given in 0 5. 

2. Vdovichenko’s method for the square lattice 

In Vdovichenko’s method, the free energy of an Ising model on a two-dimensional 
lattice is expressed by a determinant. The determinant is that for the unit matrix minus 
the matrix which induces directed paths on the lattice. For each step of the path along 
a bond with interaction J, we have the factor tanh PJ, where P = l / k , T ,  k ,  is the 
Boltzmann constant and T the temperature. Between each successive pair of steps, 
we have the factor exp(i8/2) where 8 is the angle between the directions of successive 
steps (181 < T ) .  This factor exp(i8/2) was introduced to associate the factor -1 with 
each simple loop (Kac and Ward 1952). Bryksin et a1 (1980) suggested the possibility 
of associating -1 to some of the successive pairs of steps, e.g. to a step in the right 
direction either followed by or preceded by a step in the downward direction. 

When we have a translational symmetry, we can express the determinant giving 
the free energy of the system by a product of determinants of a smaller dimension. In 
the case of the regular Ising model on the square lattice, we have four bonds emanating 
from a site. The dimension of the smaller determinants is 4x4. In each of these 
determinants, we have a factor for Fourier transform p = exp(2 i l~ /  L ) ,  p,  q = 
e x p ( 2 i m ~ / M )  or 4 depending on whether the element corresponds to a step in the 
right, left, up or down direction, where L and M are the total numbers of sites along 
the horizontal and vertical directions, respectively, on the lattice, and 1 and m are 
integers between 0 and L - 1 and between 0 and M - 1, respectively. The determinant 
of the smaller dimension is 

11-px  -px 0 +px I 

where 

x = tanh PJx y = tanh PJ, (2) 

if J, and J, are the interaction of nearest neighbours along the horizontal and the 
vertical direction, respectively. 
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Figure 2. Matrix elements represent an addition of a step of the path. The columns from 
the left are for the preceding step of right, up, left and down direction, respectively, and 
the rows from the top are for the succeeding step of right, up, left and down direction, 
respectively. 

Each element in (1) corresponds to a successive pair of steps on the path as shown 
in figure 2. Equation (1) is rewritten as 

I x 1 0 -11 

1-1 0 1 Fl 
where 

Note that 0 in (3 )  shows that a doubling back is not allowed in the path, and -1 are 
the factors giving the factor -1 for each loop. 

In the thermodynamic limit of L+ CO and M + 00, the free energy per site f is given 

x = -( l /px)  + 1 Y = -( 1/ qy ) + 1. (4) 

by 
-pf = In 2 +In cosh pJx  +In cosh pJ ,  

The phase transition occurs at the temperature where the determinant (3) is zero for 
a pair of p and q with IpI = 141 = 1. The corresponding values of p and q give the pitch 
of the ordered phase. For the ferromagnetic case, p = q = 1. For the antiferromagnetic 
case, p = q = -1. For the layered antiferromagnetic case, p = -q  = 1 or p = -q  = -1. 
Determinant (3) is expressed as 

which becomes zero when 

From (4) and (7), we obtain the transition temperature and the ordered phase. 

m p ,  9 )  = x ’ y 2 ~ ~ 1 ~ I I ~ I - ~ ~ 2 + ~ ~ 1 ~ I I ~ I - ~ ~ + ~ ~ ~ ~ +  n 1 1  ( 6 )  

X = X  Y = F  and X Y = 2 .  (7) 

3. Vdovicheoko’s method for the centred square lattice 

In the model of figure 1, we have eight bonds emanating from a site of sublattice A 
and four bonds from a site of sublattice B. We order the 8 + 4 steps along those bonds 
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as in figure 3. In the present case, the determinant of the smaller dimension, correspond- 
ing to (3) ,  is one of 12x 12 and is written as 

x 1 0 - 1  0 0 0 0 1 1 - 1 - 1  
1 Y 1 0 0 0 0 0 1 1 1 - 1  
0 1 ~ 1 0 0 0 0 1 1 1 1  

-1 0 1 P o o o o - 1 1 1 1  
1 1  1 - 1  z, 0 0 0 1 1  0 - 1  

where 

1 1  1 1  0 2 2 0  0 1 1  1 0  
-1 1 1  1 o o z ; o o  1 1  1 
- 1 - 1  1 1 0 0 0 z;-1 0 1 1 

0 0 0 0 1 1  O - l Z O  0 0 
o o o o 1 1 1 o o 2 ; o o  
0 0 0 0 0 1 1 1 0 0 ~ 0  
0 0 0 0 - 1  0 1 1 0  0 0 z, 

x = - ( l / p x ) + l  Y = - ( 1/ qy ) + 1 

z, = - (l/pqz) z2 = - ( l / q z )  

Z ' - -  1 -  ( I / & )  & = - ( l / z ' )  

x = tanh pJ1 

z = tanh pJ3 

y = tanh pJ2 

z' = tanh pJ4. 

The factor -1 is introduced for an addition of each of the steps shown in figure 4. 
There are 212 determinants which are obtained by replacing the diagonal elements with 

i 

0 
1 -  

Q4 6 
3 

b 

Figure 3. Twelve kinds of steps on the centred square lattice. Steps 1-8 are from a site 
on  sublattice A and steps 9-12 are from a site on sublattice B. 

Figure 4. The additions of a step which has a downward component is preceded by one 
not having a downward component and has a direction rotated clockwise less than 180" 
from the preceding one, and the inverse additions of these steps. 
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0 or 1. All of them are calculated, and the result is used to give the following explicit 
form of D ( p ,  q ) :  

D(eie, ei+) = ~ ~ ~ + x ~ ~ ~ z z ’ + y ~ ~ + ~ ~ ~ ~ ~ + z ’ ~ ~ ~ - ~ ~  - x ) ( l  -z2)(1 -z”)}’ 

+2(1-x2)[4zz’+y(l+z2)(1+z’2)](1 -z2)(1 -z’2)(1 -cos 4) 

- 4 ( i - ~ ~ ) ( i - ~ ~ ) ~ ~ ’ ( i - ~ ~ ) ( i - ~ ’ ~ ) ( i - ~ 0 ~   COS e). (11) 

+ 2( 1 -y2)[(z + z ’ ) 2 + ~ (  1 + z~’)2] [ (  1 - zz’)2+ X(Z - z’)2]( 1 -COS e) 

The free energy per pair of sites f is given by 

- ~ f = l n 2 + l n c o s h ~ J l + I n c o s h ~ J 2 + 2 l n c o s h ~ J 3 + 2 l n c o s h ~ J ,  

+- lo2’ dB lo2‘ dr$ f In D(eBe, ei’). 
4rr’ 

When z = z‘ and x = y ,  this expression reduces to the one obtained by Vaks et a1 (1966). 
In the cases of p = 1, q = *l, the determinant is expressed as follows: 

D ( 1 ,  +1) ={( l+x) [4zz ‘+y( l+z2) (1+z’2 ) ]T( l  - x ) ( l  -z2) (1  -z’2)}2* (13) 

At the zero of these expressions, the phase transitions to the ferromagnetic and the 
layered antiferromagnetic order, respectively, occur. 

In the case of p = q = -1, 

D(-1, -1) = {( 1 + x) [ (  1 + z2)( 1 + z’2) +4yzz’] + (1 -x)y( l  - z2)( 1 - z”)}’. (14) 

At the zero of this expression, the phase transition to the antiferromagnetic state occurs. 
We now examine the systems with x = y and z’ = *z. 

( a )  Ferromagnetic transition when J4 = J3 

Putting x = y = tanh PJ1 and z = z’ = tanh PJ3, the zero of (13) with the upper sign gives 

4 -  81’2( 1 + X)  
tanh’ PJ3 = - 1. 

1 - 2 x - x 2  

Calculating J 3 / J 1  for given values of kBT, /J , ,  we obtain the curve for the part of 
J4/ J ,  = J3/  J1 > 0 in figure 5( a )  and the curve between the paramagnetic phase (P) and 
ferromagnetic phase (F) in figure 6(a ) .  

( b )  Ferromagnetic transition when J4 = - J3 

Putting x = y = tanh P J ,  and z = -z’  = tanh PJ3,  the zero of (13) with the upper sign gives 

[ 8 ~ (  1 - x2)]”* - 4~ 
tanh‘ PJ3 = - 1  

1 - 2 x - x 2  

The boundary between P and F in the region of J 4 / J 1  < O  in figure 5 ( a )  is plotted as 
the solution of (16). 
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Figure 5. ( a )  The transition temperatures as a function of .I,/,,, where J , = J , > O  and 
J,  = *J4> 0. P, F and LAF denote the paramagnetic, ferromagnetic and layered antifer- 
romagnetic phases, respectively. ( b )  Effective two- and four-spin interactions between the 
comers on a plaquette, via the centre of the plaquette, along the transition lines. 

( c )  Antiferromagnetic transition when J4 = - J3 

When J2 = J ,  > 0, the antiferromagnetic transition occurs only when J3 and J4 are of 
opposite signs. Now we put q = -1  and J4 = -J3 and hence x = y = tanh PJ, ,  z = - z ‘ =  
tanh pJ3.  The zero of (13) with the lower sign gives 

4 - [8( 1 - x ~ ) ] ~ ’ ~  
tanh’ pJ3 = - 1. 

1+x2  

The boundary of the paramagnetic phase (P) and the layered antiferromagnetic phase 
(LAF) in figure 5 ( a )  is obtained as a solution of (17). 

( d )  Antiferromagnetic transition when J4 = J3,  J2 = J ,  < 0 

This transition is obtained by putting x = y = tanh pJ1 and z = z’ = tanh pJ3.  The zero 
of (14) gives 

4x2 + 8l’*x( 1 + x)  
1+2x-x2  

tanh2 pJ3 = - - 1. 

The boundary of the paramagnetic phase (P) and the antiferromagnetic phase (AF) 
in figure 6( a )  is obtained as the solution of (18). 
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Figure 6. ( a )  The transition temperatures as a function of J J I J J ,  where J , = J ,  CO and 
J3 = J4 > 0. AF denotes the antiferromagnetic phase. ( b )  Effective two- and four-spin 
interactions between the comers of a plaquette, via the centre of the plaquette, along the 
transition line. 

4. Effective interactions 

If we take the summation with respect to the spin variables for the sites at the czntres 
of the plaquettes on the square lattice, we can regard the system as an Ising model on 
the square lattice, where every pair and all four of the corners of a plaquette have an 
effective interaction. When J4 = J3, these interactions J $  and J$) are given by 

exp[PJ~)(s1s2+ ~ 1 ~ 3 +  s,s4+s2s3+ s2sq+s3sq)+pJ$)~1szs~s4]  

where C is a constant, and sl, s2, s3 and s4 take the values k l .  The values of the 
effective interactions are functions of J3 and the temperature T. 

For the case of J4 = -J3,  the values Jg) and J$) along the transition lines are plotted 
in figure 5 ( b ) .  J i y  between the corners on different layers must be taken to be of 
minus sign. In this case, we shall disregard the effects of J$),  since it favours equally 
the ferromagnetic phase and the antiferromagnetic or layered antiferromagnetic phase. 
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We notice that the value of J$)/ J1 is nearly equal to -0.25 around the point k, T/ J ,  - 0 
and J4/J1- -0.5. For each plaquette, there are four pairs of comers on different layers. 
The value J $ ) / J 1  x 4 just offsets the value J 2 / J 1  = 1, resulting in the reentrant transition 
to the paramagnetic phase and then to the antiferromagnetic phase, as the temperature 
is lowered when J4/ J ,  =s -0.5. 

For the case of J4 = J3 and J2 = J1 < 0, the effective interactions are plotted in figure 
6(b). At J 3 / l J l 1 3  1.0, J$)/lJll become 0.5 at very low temperatures. There are two 
effective interactions between a nearest-neighbour pair of sites on sublattice A and 
hence the value 0.5 just offsets J2 / )J l l  = -1, causing the reentrant transition from the 
antiferromagnetic state to the paramagnetic and then to the ferromagnetic state as the 
temperature is lowered. 

5. Conclusion 

The exact expression for the free energy of the Ising model on the centrer square 
lattice is obtained for a more general case than the case studied by Vaks et iZ (1966) 
by the method of Vdovichenko (1965). In the calculation, we compute 2'- ?,terminants 
with elements of integers. We see that the system with compcting interactions also 
shows a reentrant transition in a different situation. 're see that the reentrant transition 
occurs when the effective pair interactions via the centre of a plaquette exactly cancel 
the interaction J2. 
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